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Abstract. Forest fires cause large emissions of C (carbon), N (nitrogen) and Hg (mercury) to the atmosphere and thus
have important implications for global warming (e.g. via CO2 and N2O emissions), anthropogenic fertilisation of natural
ecosystems (e.g. via N deposition), and bioaccumulation of harmful metals in aquatic and terrestrial systems (e.g. via Hg

deposition). Research indicates that fires are becoming more severe over much of North America, thus increasing element
emissions during fire. However, there has been little research relating forest floor andmineral soil losses of C, N andHg to
on-the-ground indices of fire severity that enable scaling up those losses for larger-scale accounting of fire-level emissions.

We investigated the relationships between forest floor and mineral soil elemental pools across a range of soil-level fire
severities following the 2011 Pagami Creek wildfire in northern Minnesota, USA. We were able to statistically
differentiate losses of forest floor C, N and Hg among a five-class soil-level fire severity classification system. Regression
relationships using soil fire severity class were able to predict remaining forest floor C, N and Hg pools with 82–96%

confidence. We correlated National Aeronautics and Space Administration Airborne Visible and Infrared Imaging
Spectrometer-Classic imagery to ground-based plot-scale estimates of soil fire severity to upscale emissions of C, N and
Hg to the fire level.We estimate that 468 000MgC, 11 000Mg ofN and over 122 g ofHgwere emitted from the forest floor

during the burning of the 28 310 ha upland area of the Pagami Creek fire.
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Introduction

Forest fires emit large amounts of C, N andHg to the atmosphere

(Amiro et al. 2001; Kasischke et al. 2005; Kolka et al. 2014).
Globally, fires emit,2 Pg of C annually to the atmosphere (van
derWerf et al. 2010), which is comparable to 23% of total fossil

fuel emissions (Boden et al. 2012). Similarly, fire results in an
estimated 25 Tg of N or ,20% of anthropogenic emissions
(Gruber and Galloway 2008), and ,675 Mg of Hg annually or
9% of all Hg emissions (Friedli et al. 2009). C and N emissions

by fire increase atmospheric concentrations of greenhouse
gases (van der Werf et al. 2010), possibly increasing climate

forcing and global temperatures. Climate change is increasing
drought and fire occurrence in the western USA (Westerling
et al. 2006) and in the boreal region (Kelly et al. 2013), thus

creating a positive feedback loop with emissions from fire.
Generally, much of the C and N that is liberated during fire
comes from the forest floor (or O-horizon) and in some cases
the upper mineral layers of the soil (Nave et al. 2011;
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Miesel et al. 2012). During fire, especially severe fire, organic
matter pyrolysis affects the remaining structure and composi-
tion of soil organicmatter, potentially having negative effects on

nutrient cycling, soil water repellency and subsequent soil water
status, and overall plant productivity (Neary et al. 1999). Losses
of C and N can also increase the potential for erosion once the

stabilising organic layer is consumed (Neary et al. 1999).
Hg is a pollutant of global concern because its organic form,

methylmercury (MeHg), bioaccumulates in the food chain,

leading to harmful effects on human nervous system functions
(Scheuhammer et al. 2007). Fish consumption advisories for Hg
are in place in all 50 states of theUSA, all 13Canadian provinces
and territories, and across northern Europe and Australia,

including global recommendations from the World Health
Organization. Landscapes with a preponderance of lakes,
streams and wetlands are especially vulnerable as MeHg is

produced in low oxygen environments (Grigal 2003). The
largest source of atmospheric Hg is the burning of fossil fuels
and it is deposited as either wet or dry deposition (Witt et al.

2009; Pirrone et al. 2010). Hg emissions from uncontaminated
soils are generally low and can even be negative as soils can be
sinks for gaseous Hg (Haynes et al. 2017). Emissions of Hg

during fire lead to increased local deposition downwind of fire
as a result of particulate deposition. Studies in the sub-boreal
region of northern Minnesota indicate Hg deposition resulting
from fire can increase local annual deposition by 40% in the year

of the fire (Witt et al. 2009), possibly leading to short-term
increases in Hg in the aquatic food chain. However, losses of Hg
from forest floor and mineral soils at the watershed scale

following fire may reduce Hg in future upland hydrologic
transport to surface waters, resulting in long-term decreases in
Hg concentrations in the aquatic food chain (Gabriel et al.

2009).
As Hg has a high affinity for organic matter complexes,

highest concentrations are found in upper soil layers where the
most organic matter is present. Like C, Hg partitions between

the solid and dissolved phase and complexes with humic acids
and other dissolved phase fractions found in dissolved organic
matter (Kerndorff and Schnitzer 1980). Numerous studies have

shown relatively high correlations between Hg and dissolved
organic C or dissolved organic matter in soils and surface
waters (e.g. Kolka et al. 1999). During fire, both C and Hg are

volatilised in gaseous forms, mainly CO2 and Hg0.
Fire severity and intensity are often wrongly used inter-

changeably. Keeley (2009) defines fire intensity as a measure of

energy output, whereas fire severity or burn severity metrics
indicate the loss or change in organic matter aboveground or
below ground. Keeley (2009) also indicates that fire severity can
be used to predict some ecosystem responses but not all. Jain and

Graham (2007) used vegetation and soil data from Rocky
Mountain fires to develop severity classes for both a tree fire
severity index and soil fire severity index. Here we use the Jain

et al. (2012) soil fire severity index to test for differences among
classes in soil C, N and Hg pools and as a way to scale up
elemental emissions to the fire scale.

High-severity fires oxidise soil organic matter and lead to
decreases in overall soil C andN pools (Certini 2005); combined
firewith blowdown and salvage logging (high fire severity) have
been shown to decrease Hg forest floor pools (Mitchell et al.

2012). The ability to use fire severity as a surrogate for losses
of forest floor and mineral soil C, N and Hg pools is needed to
scale fire effects. Combining remote sensing techniques with

on-the-ground data to test and validate larger-scale models is an
important first step in being able use remote sensing to scale up
emissions.

In our previous research on the Pagami Creek fire in northern
Minnesota, we compared forest floor and mineral soil sampled
at the scale of the forest floor frame (0.71 m2; 30-cm diameter

circular plots) to the Jain et al. (2012) soil fire severity index
measured at 10-m2 subplots and averaged at the plot scale
(500 m2; 25.2-m diameter circular plots). That approach failed
to provide predictive relationships (Kolka et al. 2014), suggest-

ing that the scale at which soil fire severity is determined is
important for being able to identify relationships between soil
fire severity and soil element response. Although our earlier

research identified significant differences in forest floor pools of
C, N and Hg between unburned and burned plots, it did not
reveal differences among soil-level fire severity classes within

the burned plots (Kolka et al. 2014). As a result, we conducted a
second sampling 10 months after the Pagami Creek fire where
we collected forest floor and mineral soils and soil fire severity

information at the forest floor sampling frame scale on the same
series of plots. Our two main objectives in this paper were to
(1) distinguish C, N and Hg losses among soil fire severity
classes at the scale of the forest floor frame, and (2) scale those

losses to the fire scale by correlating remote sensing products
with plot-scale estimates of soil fire severity. Being able to use
soil fire severity to predict elemental emissions would represent

a significant advancement in our ability to assess large-scale fire
effects and recovery potential. This work was conducted using
field data collected after the 2011 Pagami Creek wildfire in

northern Minnesota, USA, which included both surface and
crown fires, thus resulting in post-fire surface conditions that
spanned the range of soil-level fire severity.

Materials and methods

Study site

The study was conducted within or immediately adjacent to the
Superior National Forest in north-eastern Minnesota, USA
(Fig. 1). The area has a mean annual precipitation of ,71 cm,

and a mean annual temperature of 28C, with mean July and
January temperatures of 178C and �88C (Kolka et al. 2014).
Undulating and glacially shaped terrain is underlain by Pre-

cambrian Canadian Shield bedrock, with soils formed primarily
from glacial till and outwash resulting from the Rainy Lobe
during the Wisconsin glacial episode. Upland soils are strongly
influenced by variable depth to bedrock, and the landscape is

embedded with abundant lakes and wetlands (Heinselman
1996). All upland mineral soils are Entisols or Inceptisols that
are well drained and considered shallow with 20–50 cm of

gravelly coarse sandy loam over bedrock; well drained with
moderately deep (50–100 cm) gravelly sandy loam over bed-
rock; or well-drained deep soils .100 cm of gravelly sandy

loam over bedrock. In the area of the fire, these broad soil
categories are mainly based on depth to bedrock and each rep-
resent ,30–35% of the area (C. McQuiston, soil scientist, US
Forest Service [USFS] Superior National Forest, pers. comm.).
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The shallow-to-bedrock soils include Quetico (Lithic Udorth-
ents) and Insula (Lithic Dystrudepts), and the moderately deep

soils include Conic (Typic Dystrudepts) and Wahlsten (Oxya-
quic Dystrudepts), with deep soils including Newfound (Typic
Fragiudepts) (Soil Survey Staff 2010). Map units generally

range from 2 to 18% slope with pines (e.g. Pinus banksiana

Lamb. and Pinus resinosa Aiton) tending to be on shallow and
sandier soils, deciduous species (e.g. Populus tremuloides

Michx., Populus grandidentata Michx., Betula papyrifera

Marshall, and Acer rubrum L.) on the deeper soils, and Abies

balsamea (L.) Mill. and Picea glauca (Moench) Voss on the
deepest and finest textured soils (C. McQuiston, pers. comm.).

A lightning strike on 18 August 2011 initiated a wildfire that
began in the north-west corner of the Pagami Creek fire area
(Fig. 1). The fire area grew slowly until 10 September when

windy and dry conditions led to a blowup and the fire travelled
10 km to the south. A subsequent change in wind direction on
12 September pushed the fire an additional 30 km to the east

and south-east. By late October 2011, the fire was contained
after burning,370 km2, making it the largest fire in Minnesota
since 1918 (Kolka et al. 2014).

Experimental design and soil collection

We designed our sampling for forest floor and mineral soil C, N

andHg pools based on pre- and post-fire satellite remote sensing
data (relative differenced Normalised Burn Ratio algorithm
[RdNBR; Miller et al. 2009]) and pre-fire maps of forest

structure and composition that helped us identify areas likely to
bemore susceptible to higher-severity burns (Wolter et al. 2009;

Wolter and Townsend 2011). Using the RdNBR and pre-fire
maps we anticipated sampling across expected gradients in fire
severity. Soils and ancillary data were collected during two

periods. The first set of soil samples were collected in October–
November 2011 and April–May 2012 with the data reported in
Kolka et al. (2014). The October–November samples were
collected immediately after the fire and focused on fire-affected

plots. During this initial sampling campaign, it was apparent that
our assessment of fire severity using remote sensing and pre-fire
maps under-represented the highest soil fire severity classes.

Therefore, additional soil samples were collected in April–May
2012 and included 24 unburned control plots established outside
the Pagami Creek fire boundary, as well as 25 burned plots that

represented the higher soil fire severity classes that were under-
represented in the 2011 collection. The October–November
2011 and April–May 2012 samplings established 123, 12.6-m

radius upland soil plots (wetland plots were excluded from this
study), including the unburned control plots (Fig. 1, Kolka et al.
2014). The second sampling occurred in August–September
2012, ,10 months after the fire, and the data in this paper are

based on the analysis of those samples. Even after 10 months,
soil fire severity was easily estimated as regrowth was minimal.
During the second sampling in August–September 2012, 102 of

the original 123 plots were revisited and we collected triplicate
forest floor and mineral samples at 4.2 m from the plot centre
(0.5 m further from plot centre than the first sampling) at the
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Fig. 1. Location of wildfire area and plot locations in north-eastern Minnesota, USA (Kolka et al. 2014).
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same three cardinal directions (08, 1208 and 2408). Forest floor
samples included the complete forest floor layer (litter þ duff;

i.e., complete organic horizon) collected within a 30-cm dia-
meter circular sampling frame. Any apparent new litter (within
the last 10 months) was removed from the forest floor sampling

frame before collection of the complete forest floor layer.
Following collection of the forest floor samples, forest floor
depth was measured in the four cardinal directions (08, 908, 1808
and 2708). Mineral soil samples were collected from 0–10 cm

and 10–20-cm depths using a 5-cmdiameter hammer-driven soil
corer. As our initial results indicated few differences in C, N and
Hg pools across soil fire severity classes when aggregated at the

plot scale (Kolka et al. 2014), during the second sampling in
August–September 2012, the forest floor and mineral soils were
not aggregated and the soil fire severity was assessed within its

respective forest floor sampling frame as described below.

Soil-level fire severity estimate

Jain and Graham (2007) developed a ground-based soil fire

severity classification through a synthesis of the literature. The
classification has five categories of soil fire severity ranging
from 0 (unburned) to 4 (most severely burned). The soil fire
severity class system corresponds to the post-fire index dis-

cussed by Jain et al. (2012), with themain class depending on the
surface areal coverage of forest floor remaining (0–4 scale) and
the subclass assessing the heat-induced oxidation level of the

exposedmineral soils (i.e. colour, 0–3 scale). For themain class,
0 represents unburned, 1 represents the lightest burn class with
.85% of the forest floor remaining, 2 represents areas with

40–85% forest floor remaining, 3 represents 1–40% forest floor
remaining and 4 represents no forest floor remaining (see Fig. 2

for examples). Because of a small number of samples in some
soil fire severity soil colour subclasses, we analysed the data at
the top hierarchical severity class level (i.e.% of forest floor

remaining, levels 0–4).
As described in Kolka et al. (2014), during the first soil

sampling, soil fire severity was estimated on 10-m2 circular
subplots located at 6.5 m at three azimuths (08, 1208 and 2408)
from plot centre that did not overlap where forest floor and
mineral soil was sampled. The subplot soil fire severity compo-
nents were averaged to the plot scale and compared with plot-

aggregated forest floor and mineral soil C, N and Hg pools. For
the data presented here, during the resample campaign in
August–September 2012 we assessed soil-level fire severity

within the 30-cm diameter forest floor sampling frame.

Soil analysis

Individual, non-aggregated forest floor andmineral soil samples

from the August–September 2012 samples were frozen at
�208C upon return to the laboratory. Within 2 months, samples
were thawed and a subsample was oven-dried at 658C for forest
floor and 1058C for mineral soils to measure and correct for soil

moisture and subsequently to calculate bulk density. The
remaining forest floor and mineral soil samples were air-dried
and mineral soils were passed through a 2-mm sieve before

grinding. Both forest floor and mineral soils were ground with a
stainless steel Wiley mill with complete cleaning between
samples. Samples were analysed for total C and N concentration

(a) (b)

(c) (d)

Fig. 2. Example of soil fire burn severity classes: (a) class 1,.85% forest floor remaining; (b) class 2, 40–85% forest floor remaining;

(c) class 3, 1–40% forest floor remaining; and (d) class 4, 0% forest floor remaining.
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on a LECO total elemental analyser with a separate subsample
analysed for total Hg concentration using a direct Hg analyser
(DMA-80, Milestone Inc.) and United States Environmental

Protection Agency Method 7473 (USEPA 2009). To determine
forest floor C, N and Hg mass per unit area (i.e. pools), we
multiplied the C, N and Hg concentrations by the dry mass

equivalent of the entire forest floor sample. For mineral
soils the oven-dried corrected mass of the entire 0–10 and
10–20-cm depth increments were used to determine overall
soil bulk density (including the .2-mm fraction). The fine soil

bulk density (including only the ,2-mm fraction) was deter-
mined following the removal of the .2-mm fraction, with
the density of that fraction estimated to be 2.65 g cm�3 (i.e. the

density of quartz). The pools of mineral soil C, N and Hg are
based on the fine soil bulk density.

Statistical analyses

Here we analyse and report the results for the second soil sam-

pling inAugust–September 2012.We determined variation in C,
N andHg pools across soil fire severity classes at the scale of the
forest floor frame using one-way generalised linear models

(PROC MIXED, SAS v. 9.3 Cary, NC) (Table 1). When dif-
ferences among soil fire severity levels were significant, we
performed mean separation tests using Tukey’s adjustment for
multiple comparisons (McDonald 2014).

To meet assumptions of normality, we log-transformed data
for forest floor C pools, 0–10-cmmineral soil C, N and Hg pools
and 10–20-cm mineral soil C, N and Hg pools before analysis.

We ranked data for forest floor N and Hg pools before analysis
because normality assumptions were not met for these variables
under any standard transformations.

Scaling to upland fire-level emissions of C, N and Hg

National Aeronautics and Space Administration (NASA) Air-

borne Visible and Infrared Imaging Spectrometer-Classic
(AVIRIS-C) imagery was collected over the study area 1 year
after the fire (27–30 September 2012) from a Twin Otter aircraft
flying at 5425 m above sea level (eight images total, ground

resolution ,4 m). AVIRIS-C measures 350–2500 nm in nom-
inal 10-nm wavebands (224 bands) with a signal-to-noise ratio
greater than 500:1. AVIRIS-C data are provided by NASA-JPL

orthorectified and atmospherically corrected to apparent
at-surface reflectance (Thompson et al. 2015). Image pre-
processing consisted of vector normalisation by pixel to remove

the effects of cross-track illumination (due to the low solar
angles) (e.g. Feilhauer et al. 2010). We utilised the minimum
noise fraction (MNF) transform (Green et al. 1988; Boardman

and Kruse 1994) for data dimensionality reduction and de-
noising. MNF transform is a two-part principal components
analysis (PCA) transformation that first estimates the noise
covariancematrix of the data and then uses the PCAof the noise-

whitened image data to reduce the dimensionality of the imagery
while simultaneously removing noise-dominated components.
Like a classic PCA, bands showing the largest eigenvalues

contain the most information, and bands showing progressively
lower eigenvalues contain the ‘noise components’ of the
imagery. The first five MNF bands showed substantial spatial

and spectral variability within the burn scar and explained over
90% of the spectral variability in the imagery. These bands were
extracted from MNF stacks of the images, resampled to 10-m

resolution to reduce between-pixel heterogeneity, mosaicked
into a single image and filtered with a 3 � 3-pixel moving
window using a Gaussian averaging kernel. Subsequent statis-
tical analyses utilised MNF bands 1–3 and 5 (band 4 was most

strongly related to solar illumination gradients rather than fire
effects). All water bodies and lowland forests were masked
using data from Wolter et al. (2012) and the US Geological

Survey National Land Cover Database 2011 land cover dataset
(Homer et al. 2015). Image processing was conducted using
ENVI (Exelis Visual Information Solutions, Broomfield, CO)

and custom scripts written in the Interactive Data Language
(IDL) and Python. AVIRIS-C MNF spectra were extracted for
all plot locations, with locations falling within 10 m of water
bodies or lowland forests masked from all analyses (final

n ¼ 112). We used a two-stage linear discriminant analysis
(LDA) to classify (map) the Jain et al. (2012) soil fire severity
classes (0–4) as a function of the four MNF bands. To refine and

test the model, we utilised 1000 randomised permutations of the
LDA split 60/40 into training and testing fractions stratified by
the soil fire severity class. For the 1000 permutations, we

assessed the percentage agreement between the mapped plot
class and field-determined plot class (from the mean percentage
organic matter cover of the three 10-m2 subplots converted then

to the Jain Index), labelled the observation based on the class it
was mapped to 75% of the time, and then re-ran the LDA, again
with 1000 permutations. A final model was then applied to the
entire MNF dataset.

Results

Soil fire severity relationships with C, N and Hg pools

We found significant differences in forest floor C pools
(Mg ha�1) across all soil fire severity classes, and N (Mg ha�1)

and Hg (g ha�1) pools significantly differed across all soil fire
severity classes with the exception of the 0 and 1 classes,
which were similar (Fig. 3). Forest floor C, N and Hg pools

decreased with higher-severity fires. Our mean separation tests

Table 1. Results of generalised linear models, showing F and P values

for soil fire severity level for forest floor, 0–10 cm and 10–20-cm soil for

C, N and Hg pools sampled in 2012 (n5 236).

Bold P-values are less than 0.05, indicating significance

Soil layer response variable Severity level

F P

Forest floor CA 199.9 ,0.0001

N 202.7 ,0.0001

Hg 187.6 ,0.0001

0–10-cm mineral CA 1.24 0.2955

NA 3.74 0.0056

HgA 1.12 0.3467

10–20-cm mineral CA 3.15 0.0152

NA 3.36 0.0107

HgA 3.02 0.0188

AData were log-transformed before analysis.
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failed to indicate statistically significant differences among
soil fire severity classes for C and Hg pools in either the

0–10 or 10–20-cm mineral soils, probably as a result of the
insulating ability of the forest floor. In contrast, at 0–10-cm soil
depth, greater N pools were found in soil fire severity class 4

than in class 1, with other classes being similar. At 10–20-cm
soil depth, greater N pools were found in soil fire severity class 4
than in class 1 and 3, with other classes being similar. Negative
linear and exponential regression relationships for forest floor C,

N and Hg pools with soil fire severity class were all highly
significant (Table 2).

Remote sensing analyses

In the first-stage LDA, the majority (70%) of the original 112
locations (including only plots within the burn area; excluding
some unburned plots outside the burn area) used for mapping

showed no change in the assigned class between permutations.

As described above, locations showing changes were assigned

to classification present in .75% of the permutations, and the
LDA was re-run producing final calibration and validation
accuracies of 75.9% (�3.5% s.d.) and 69.6% (�4.6% s.d.). The

two-stage analysis resulted in reductions of 25% and 23% in
uncertainty from the first to second stage of analysis.
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Fig. 3. Boxplots showing C, N and Hg pools in the forest floor (panels a, d and g), 0–10-cm mineral soil (panels b, e and h) and 10–20-cm mineral soil

(panels c, f and i) by soil-level fire severity class for 2012 samples from the Pagami Creek wildfire. Italicised lowercase letters within panels indicate

differences among soil fire severity levels at the P# 0.05 significance level, and ‘ns’ indicates no significant differences. Note differences in y-axis scales

within and among elements.

Table 2. Linear and exponential regression relationships between

forest floor C, N (Mg ha21) and Hg (g ha21) pools and soil fire severity

class (P , 0.05 for all regressions)

Element Linear R2 Exponential R2

C C¼�4.08(class)þ 13.88 0.82 C¼ 25.37e�1.29(class) 0.94

N n¼�0.11(class)þ 0.51 0.96 n¼ 2.68e�1.21(class) 0.87

Hg Hg¼�1.11(class)þ 4.90 0.86 Hg¼ 36.65e�.48(class) 0.91
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The image analyses indicated the upland area of the fire was
,28 310 ha with soil fire severity classes of 1 representing 9.5%
of the area, 2 representing 4.2% of the area, 3 representing

23.9% of the area and 4 representing 62.4% of the area.

Losses of C, N and Hg pools at the fire scale

We scaled up themean elemental differences between unburned

forest floor and mineral soil samples and each of the burned soil
fire severity classes by the area in each of the soil fire severity
classes, to estimate fire-level emission losses. Based on differ-

ences in the forest floor element pools across soil fire severity
classes, losses of C, N and Hg pools were estimated to be
468 000 Mg of C, 11 000 Mg of N and 122 kg of Hg over the
28 310 ha upland area of the Pagami Creek fire. Because of

only mineral soil differences among the burned soil fire
severity classes for N in the 0–10 and 10–20-cm pools (i.e. no
difference between the unburned reference condition and

burned classes), mineral soils did not contribute to fire-level
losses of C, N and Hg.

Discussion

Our previous research in which we aggregated forest floor and
mineral soils at the plot scale (25-m diameter) found elemental
emission differences between the forest floor soil fire severity

unburned class (0) and the burned classes (1–4), but no differ-
ences among the burned classes (Kolka et al. 2014). As a result,
scaling of the losses of C, N and Hg pools to the fire scale was a

mean of all burned soil fire severity classes. Results from the
second sampling (August–September 2012), where we sampled
and analysed forest floor and mineral soils without aggregation
and conducted the soil fire severity classification at the scale of

the forest floor frame, gave us greater ability to distinguish forest
floor losses of C, N and Hg across the burned soil fire severity
classes. The use of AVIRIS hyperspectral imagery to map Jain

et al. (2012) soil fire severity classes further enabled us to scale
the results to the whole fire with confidence. Our predictive
capabilities captured almost 76% of the variation during model

development and almost 70% during model validation. Forest
floor pools of C, N and Hg measured at the scale of the forest
floor frame were distinguishable across all soil fire severity

classes with the exception of N and Hg pools between the
unburned category (0) and lowest burn class (1). The lowest
burn class is defined as having.85% surface cover of the forest
floor remaining (Jain and Graham 2007); therefore, the differ-

ence between percentage forest floor remaining was least
between the unburned (0) and lowest (1) severity class (i.e. 15%,
whereas between classes 1 and 2 there is a 45% difference and

between 2 and 3 there is a 40% difference, with class 4 at 0%
forest floor remaining), possibly leading to more overlap in
estimates of elemental pools between unburned and the lowest

severity class, especially when considering burned areas can
have up to 99% of the forest floor remaining.

For comparison, in boreal Alaska, a severity index (Compos-
ite Burn Index or CBI) was used to compare losses of organic

layer C estimated by reconstructing the organic layer using
the exposure of black spruce (Picea mariana (Mill.) B.S.P)
adventitious roots following fire (Boby et al. 2010). When

comparing the substrate component of the CBI to organic layer

C combustion across 36 sites, Boby et al. (2010) found a fairly
weak relationship (R2 ¼ 0.28). Using the same method across
81 burned sites in the boreal area of Alaska, Kasischke et al.

(2008) found a similar weak relationship between substrate CBI
and organic layer depth (R2¼ 0.35), and concluded that ‘the CBI
approach has limited potential for quantifying fire severity in

these ecosystems, in particular organic layer consumption’.
Boot et al. (2015) found no relationship between a three-class
fire severity assessment and C pools in forest floor and upper

mineral soils following fires in ponderosa pine (Pinus ponder-
osa Lawson & C. Lawson) ecosystems in Colorado, USA. In
contrast to Boby et al. (2010), Kasischke et al. (2008) and Boot
et al. (2015), using the Jain Index (Jain et al. 2012) we were able

to develop very good relationships between soil fire severity
index and elemental pools in the forest floor, with linear and
exponential correlations ranging from 82 to 96% (Table 2).

Mitchell et al. (2012) used a similar version of the classification
as in this study and found a general pattern of higher forest floor
Hg losses in higher-severity classes with no differences in

mineral soils across severity classes. Using a fire severity
classification suggested by Keeley (2009) that was a function
of vegetation and surface soil effects, Woodruff and Cannon

(2010) found differences between unburned and severely
burned northern Minnesota sites in C and Hg from OþA-
horizon soils, with a light–moderate burn severity class similar
to both unburned and severely burned sites. Biswas et al. (2007)

found differences in Hg storage in burned and unburned Rocky
Mountain soils that appeared to include both organic and upper
mineral soil horizons and inferred differences in Hg pools across

three classes of fire severity, but the differences were not
supported by statistical analyses. It is difficult to compare our
results to those of Woodruff and Cannon (2010) and Biswas

et al. (2007) because of the different approaches to soil sam-
pling. A-horizon soil depth was generally shallow at our sites
and given the large differences in forest floor (i.e. O-horizon)
C, N and Hg pools, if combined we may have also seen

differences. Engle et al. (2006) related mineral soil Hg losses
following fire to C:Ca ratios as an indicator of fire severity
(with lower C:Ca ratios being more severe), but found that the

relationships were inconsistent. Acknowledging the work of
Woodruff and Cannon (2010) and Mitchell et al. (2012), this is
only one of a few studies to demonstrate that fire severity indices

can produce statistically valid relationships that differentiate
losses of forest floor C and Hg pools across soil fire severity
classes, and the first study that has accomplished this for losses

of N. Although fire effects on forested mineral soils vary,
numerous studies have shown few effects on C and N pools in
mineral soils (see reviews by Nave et al. 2011 and Miesel et al.
2012), which we attribute to the much more limited heating that

is experienced in mineral soil layers, especially when forest
floor cover persists to provide insulation to the underlying
mineral soil (Neary et al. 2008).

In contrast to our results for 0–10 and 10–20-cm mineral soil
C and Hg pools, we observed significant differences in N pools,
with the highest soil fire severity class having the highest soil N

pools among some of the burned classes, both at 0–10 cm and
10–20-cm soil depth. Others have found increases in soil N
following fire and ascribe those differences to leaching of
organically bound N from the remaining forest floor and ash,
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and possibly biological fixation (Alban 1977; Lynham et al.

1998; Bodı́ et al. 2014).
In this study, forest floor emission rates ranged from 10 to

17 Mg ha�1 for C, 0.16–0.43 Mg ha�1 for N and 2.5–4.6 g ha�1

for Hg across the four soil fire severity burn classes. Our results
fall within or close to the range that Boby et al. (2010) found for

organic soil C (10–40 Mg ha�1) and N (0.25–1.3 Mg ha�1) for
boreal forest fires in Alaska. Also within the range of our Hg
emissions, Engle et al. (2006) found emissions of 2.6 and

3.6 g ha�1 for Hg for wildfire and prescribed fire for forest fires
in the Sierra Nevada. Homann et al. (2015) found generally
higher Hg emissions for forest wildfires in south-western
Oregon in unthinned, thinned and clearcut sites (,4.5, 18 and

20 g ha�1). Hg emissions from the unthinned site were from the
forest floor only and were comparable to emissions for our
highest soil fire severity burn class (4.6 g ha�1), while both

thinned and clearcut sites also had losses from upper mineral
soils (A horizon) leading to higher Hg emissions. Similarly,
Carpi et al. (2014) used chamber methods to measure Hg fluxes

of 4.1 g ha�1 from Brazilian forest soils (0–5 cm) during
harvesting and fire that also fall into the range we measured.

The relationship between forest floor element losses and soil

fire severity both assessed at the scale of the forest floor frame,
combined with remotely sensed assessments of plot-scale soil
fire severity, allowed us to extrapolate post-fire elemental losses
for the entire burn area. Overall, we estimate a 94% decrease in

the forest floor C pool as a result of the fire that led to
468 000 Mg of C emissions; a decrease of 90% in the forest
floor N pool that led to 11 000 Mg of N emissions; and a 94%

decrease in forest floor Hg that lead to emissions of 122 g of Hg.
These estimates are more reliable than previous estimates from
Kolka et al. (2014) (,500 000Mg of C, 5000Mg of N and 250 g

of Hg) that used the difference between unburned reference
systems and the average of all the burned classes, because
differences among soil fire severity classes were not detected
when aggregated samples were used in relation to plot-level soil

fire severity assessments. Given the importance of forest fires on
global budgets of greenhouse gases (notably CO2, CO, CH4,
N2O, NOx), ecosystem N fertilisation and the health implica-

tions of Hg, it is valuable to use remote sensing approaches to
model emissions at various scales for greenhouse gas account-
ing, and understanding ecosystem N dynamics and sources and

deposition ofHg. Considering thewidespread nature of fires and
that they often occur in very remote areas, the potential to use
remote sensing to estimate C, N and Hg emissions from spectral

data is an important advance. Others have used large-scale
remote sensing of fire severity to scale up elemental losses from
fire (Friedli et al. 2009; Barrett et al. 2010; van der Werf et al.
2010; French et al. 2011), but these studies did not use field-

verified relationships with fire severity to make larger-scale
assessments. In a similar context, Santı́n et al. (2015) used
remote sensing to map fire severity following fires in eucalypt

forests in Australia and found significant increases in the
amount of ash when comparing low to high, and high to
extreme fire severity. Elemental analyses of the ash samples

included C, N and Hg (among many others) with no differences
in concentrations between severity classes for N and Hg, with C
concentration highest for the low severity class and no differ-
ence between high and extreme classes (Santı́n et al. 2015).

Their motivation was to determine possible elemental loading
to surface waters resulting from ash transport during erosion
(Santı́n et al. 2015). We are not aware of any other studies that

have used field-verified relationships between fire severity
and elemental pools to scale up losses of emissions from forest
fires.

Conclusions

Soil-level fire severity classification was successfully used to
differentiate losses of C, N and Hg pools from forest floor
10 months after the Pagami Creek fire. Relationships were
developed between element pools and soil fire severity classes

by assessing fire severity at the same scale as our forest floor
(and mineral soil) sampling. Using remotely sensed estimates of
soil-level fire severity at the plot scale, we were then able to

scale up C, N and Hg losses as a result of the Pagami Creek fire.
This suggests great potential for using imaging spectroscopy
data as a basis to scale elemental fluxes based on mapped fire

severity. Taken together, our results suggest that future research
aimed at scaling post-fire losses of forest floor and mineral soil
C, N and Hg should combine small-scale soil sampling and

severity measurements with large-scale remotely sensed
assessments of fire severity to scale up emission losses.
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